If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9b^2=144
We move all terms to the left:
9b^2-(144)=0
a = 9; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·9·(-144)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72}{2*9}=\frac{-72}{18} =-4 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72}{2*9}=\frac{72}{18} =4 $
| G(3)=x^2+5x-8 | | 17m-14m=12 | | y=20*0.5^2 | | -3(5p+5)-2(3-11p)=3(6+2p) | | 10x-30=8x-2 | | F(2)=3x^2+2x-6 | | -10+2x=x-4 | | 3(7-n)=9 | | 4x^2+9x+24=0 | | 5x-8-3x=18 | | 3u+18=6u | | x-4=-10x+2 | | 3k-4=11(2k+5) | | f(24)=1/2+5 | | 2(x+1)=2x-4+2x | | 4x√3=4x^2+3 | | 3(7n)=9 | | 8(7v+1)=-160 | | 1 +c=54 | | P=4(120-n)-50n | | 4x=1=-15 | | 7,850=2(3.14)r | | B=5x^2-2x | | 16=2(s-1) | | 2w-w^2=0 | | x+40=2x+40 | | 16=2(s–1) | | 22e=22 | | 3q-17=19 | | 3x+5(3)=-6 | | 1(x+13)=10 | | 5x=6=21 |